If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+14x+640=0
a = -16; b = 14; c = +640;
Δ = b2-4ac
Δ = 142-4·(-16)·640
Δ = 41156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41156}=\sqrt{4*10289}=\sqrt{4}*\sqrt{10289}=2\sqrt{10289}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{10289}}{2*-16}=\frac{-14-2\sqrt{10289}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{10289}}{2*-16}=\frac{-14+2\sqrt{10289}}{-32} $
| 1-3v=-2(1+3v) | | 1/4(2x-28)=10 | | 10x+9=4x–9 | | 12.1x=12x+2 | | 12.1x=12x+3 | | 8x−20=3x-5 | | 10k+8=9k | | 3x+5+40=180 | | 29-6z=-21+4z | | -5x-11/2(-8x-8)=-8(8x-8)-10 | | 12.2+2x=5x | | 12.2+2x=5x+3 | | 268=67-u | | 20x-16=20+2x | | y-7+45=90 | | 12.3+2x=5x+3 | | 4.5+g=6.1 | | 12x+5=16x+2 | | 12x+5=15x+3 | | 8y-10+8y-10+4y+2=180 | | 4x+8+4=27 | | 12x+5=15x+2 | | -90=-6(p+7) | | 3x+4^2=7(3x+4) | | -4+8u=7u-6u+10 | | 4/10=w-15/10 | | y+6=2y-8 | | 16x+8=15x+5 | | 0.25x-15=-3 | | 56+x+82+50=180 | | 5w=51 | | 15x+3=2x+3 |